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The algebraic description of states of atomic vectors and their interconversions in a form of 9-
-dimensional vectors is suggested. The elaborated algorithms LENGTH and PATH calculate 
the distance between two states of an atomic vector and construct all possible shortest paths 
between them, respectively. Illustrative applications demonstrate the chemical impact and inter­
pretation of the theory. 

This communication is a continuation of our recent work 1 devoted to the mathe­
matical model of valence states of atoms and their interconversions. We have sug­
gested simple mathematical formalism for the description of valence states of atoms. 
Following its simple geometric interpretation we are able to construct combinatoriaIIy 
all possible valence states restricted by a given number of valence electrons. The 
purpose of this article is to enlarge the above mentioned theory for pairs of atoms 
(called the atomic vectors). In particular, we take into account explicitly the assump­
tion that all elementary chemical processes are running over pairs of atoms. In the 
mathematical model of Dugundji and Ug? this very serious fact was partially covered 
by the notion atomic vector, which roughly speaking, corresponds to a pair of atoms 
that are connected by the bond in a studied molecule. We generalize this notion in 
such a way that under atomic vector we shall understand an arbitrary pair of atoms 
belonging to a given ensemble of molecules (EM), it will be denoted by (X, Y), 
where X and Yare atomic symbols. If the actual valence states are presented in an 
atomic vector, it will be called the state of atomic vector, e.g. -C=N, ::C=N-, 
etc. We shall elaborate a proper formalism for description and conversions of states 

* Part IX in the series Mathematical Model of Organic Chemistry; Part VIII: Cas. p!st. 
matern., in press. 
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2638 Koea, Kratochvil, Matyska, Kvasnicka: 

of atomic vectors in two hierarchical levels depending on whether the suggested 
algebra is realized in E3 or E9 Euclidean spaces. 

ALGEBRA OF STATES OF ATOMIC VECTORS IN E3 

This algebraic aproach is devoted to the description of states of atomic vectors, 
where the lone electrons and bonds between atoms from a given atomic vector are 
explicitly treated; the bonds between other atoms are now fully ignored. 

Formal Description of States of Atomic Vectors and Their Conversions 

We start our consideration by an abstract assumption that an atomic vector is an 
indiviual molecule and its state is described by the BE matrix2 of the second order. 
Similarly, the conversion of an educt atomic vector onto product atomic vector 
is described by the reaction (R) matrix2 of the second order. Since both these matrices 
are symmetric they may be reformulated in the form of 3-dimensional vectors from 
the E3 Euclidean space. Formally, 

(1) 

where vE(P) is a 3-dimensional vector corresponding to the educt (product) and VR 

is a 3-dimensional vector corresponding to a given R matrix. 

Example 1: A nucleophile addition to carbonyle group can be initiated by the 
following step 

In the matrix formalism this process is described as follows 

C (0 2) ( ° -1) (0 1) o 2 4 + -1 2 = 1 6 . 

Transforming this matrix equation in the vector form we arrive at 

(0,2,4) + (0, -1,2) = (0, 1,6), 

Vp 

where we have used only the matrix elements from upper-triangular parts of the 
corresponding matrices. 

All the processes which are realizable simultaneously for both atoms of a given 
atomic vector we can decompose in the form of four elementary steps3: 
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X-V -+ X"+ y. , u = (1, -1,1), (2a) 

X· + y. -+ X-V, u' = (-1,1, -1), (2b) 

X· + Y -+ X + y. , V = (-1,0,1), (2c) 

X + y. -+ X" + y, v' = (1,0, -1). (2d) 

In the right column the corresponding R vectors are presented; we emphasize that 
the processes (2a), (2b) and (2c), (2d) are mutually inverse, algebraically, u' = -u 
and v' = -v. 

It means thall all processes running simultaneously over both atoms of a given 
atomic vector may be formally expressed as the linear combination of the above 
introduced 3-dimensional R vectors u and v, 

(3) 

Example 2: Let us consider the process 

X=y -+ X-y. 

In the vector formalism the educt and product atomic vectors are represented by 

(0,3,0) -+ (4, 1,0). 

Then, following the Eq. (1), the assigned R vector is 

vR = (4, 1,0) - (0,3,0) = (4, -2,0). 

This vector is expressible by the linear combination of vectors u and v (see Eq. (3)), 

vR = (4, -2,0) = Cl(l, -1,1) + cz(-l,O, 1), 

solving the system we get Cl = 2 and Cz = -2. 
Hence, the studied general process corresponds to two conversions (2a) and two 
conversions (2d). 

Geometric Representation of Conversions of States of Atomic Vectors 

In t he preceding section every process running simultaneously over both atoms of an 
atomic vector can be expressed by the linear combination of two vectors u and v. 
All isoelectronic atomic vectors (e.g. X~y, X=Y, X-V, etc.) are geometrically 
visualized at the same plane of 3-dimensional Euclidean space E3. The vectors 
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2640 Koca, Kratochvil, Matyska, Kvasnicka: 

u = (1, -1,1) and v = (-1,0,1) are orthogonal, uv = ° (the scalar product is 
defined in the standard manner), we enlarge this system of two orthogonal vectors 
by a third vector w which is orthogonal to previous ones (e.g. by Schmidt's ortho­
gonalization method), we get 

U = (1, -1, 1), 

v = ( - 1, 0, 1) , 

w = (1/3,2/3, 1/3). 

(4) 

These three orthogonal vectors will serve as a new coordinate system at the 3-dimen­
sional Euclidean space E3. An arbitrary vector a = (al, a2, a3) E E3 is expressed by 

(5) 

where the coeficients Xl' X2, X3 are called the coordinates of a in the system of 
orthogonal vectors in Eq. (4). Introducing Eq. (4) into Eq. (5) we get 

Xl = (a1 - az + a3)/3 , 

X z = (a 3 - a1)/2, 

X3 = (a l + 2az + a3)/2 . 

(6a) 

(6b) 

(6e) 

If a state of atomic vector is determined by the vector a = (ai, az, a3 ), then its 
number of valence electrons is equal to a1 + 2az + a3 = 2X3 (ef. Example 1). It 
means that all isoelectronic atomic vectors have the same coordinate X 3 , they are 
situated at the plane which is parallel with a plane containing the axes U and v and 
distance between them is X3 (ef. Fig. 1). In this new coordinate system the elementary 
processes described by Eqs (2) have the coordinates Xl' Xz, X3 determined as follows:. 

Elementary process Coordinates 

Xl' Xz, X3 

(2a) 1,0, ° (7a) 

(2b) -1,0, ° (7b) 

(2e) 0,1, ° (7e) 

(2d) 0, -1, ° (7d) 

We have considered only those processes that are running over both atoms from 
a given atomic vector, for our forthcoming considerations it will be worthwhile to 
study also processes which involve only one atom from the atomic vector. 
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Example 3: Next step of the mechanism studied in example 1 may look as follows 

From the standpoint of atomic vector (C, 0) this process is 

C-OI -> C-O. 

In the vector formalism we get 

(0,1,6) + (0,0, -2) = (0,1,4), 

where the R vector is V R = (0, 0, - 2). 

The processes that are similar to the above example are expressible via the fol­
lowing four elementary steps: 

x + Y· -+ X + Y, V R = (0, 0, -1) , (Ba) 

X + Y -+ X + Y· , V R = (0,0, 1), (Bb) 

X" + Y -+ X + Y, V R = (-1,0,0), (Be) 

X + Y -+ X· + Y, V R = (1,0,0). (Bd) 

We note that the processes described by Eqs (Ba - b) and, similarly, the processes 
(Be - d) are mutually inverse. It means that R vector assigned to an arbitrary process 
running over only one atom of a given atomic vector may be determined by the 
linear combination of R vectors corresponding to elementary processes (Ba) and (Be). 
The coordinates Xl' X2, X3 of Eqs (B) in the orthogonal system u, v, ware: 

Elementary process 

(Ba) 

(Bb) 

(Be) 

(Bd) 

Coordinates Xl' X 2 , X3 

-1/3, -1/2, -1/2 

1/3,1/2,1/2 

-1/3,1/2, -1/2 

1/3, -1/2,1/2. 

The obtained results aIlow us to visualize geometrically all possible atomic vectors 
with arbitrary number of valence electrons and multiplicity of bond between atoms 
from atomic vectors, and also, their mutual interconversions, see Figs la and 1 b. 
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u 

a 

.., 

FIG. 1 

A subsection of over-all geometrical representation of the states of atomic vectors and their 
mutual conversions. a the states of atomic vectors involving even or odd number of electrons; 
b the states of atomic vectors involving only even number of electrons. The specification of con-
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2 J u 

b 

versions is identical with the previous one l • If a conversion runs over a pair of atoms, then the 
used specification is controlled by its first atom. For a conversion involving only one atom the 
used specification is controlled by this atom (e.g. the symbol IDA describes a one electron oxidative 
dissociation running on the first atom of a given atomic vector, for example, X-Y - X-Y) 
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ALGEBRA FOR STATES OF ATOMIC VECTORS IN E9 

The elaborated algebraic theory is suggested for a description of atomic vectors 
from the standpoint of valence states of both their atoms. 

Formal Description of States of Atomic Vectors 

In our previous communication1 the valence states of atoms were described by 
a 4-dimensional vector. Since the state of atomic vector is fully characterized by the 
valence states of its constituent atoms and the multiplicity of a bond between them, 
it should be represented by a 9-dimensional vector 

(9) 

where V1' VG are the numbers of lone valence electrons on the first and second atom, 
respectively; V2 , V7 are the numbers of single bonds starting at the first and second 
atom, respectively; v3 , VB are the numbers of double bonds starting at the first and 
second atom, respectively; V4 , V9 are the numbers of triple bonds starting at the first 
and second atom, respectively; Vs is the multiplicity of bond between atoms forming 
the atomic vector. 

Example 4: The state of atomic vector assigned to the carbonyl group ::C=Q is 

v = (0,2, 1,0,2,4,0, 1,0) . 

The total number of all possible states of atomic vectors may be roughly enumerated 
by the following simple considerations: We start from 139 valence states of the 
octet chemistry\ we can construct from them 139.139 = 19321 pairs. Let us as­
sume that an atom in fixed valence state may form at most two distinct pairs with 
another atom at a fixed valence state (e.g. for valence states -X= and -Y= we 
get a pair of bonded atoms =X-Y= and a pair of isolated atoms =X Y=). This 

I I 
means that we can estimate, roughly, 40000 distinct states of atomic vectors. 

Conversions of States of Atomic Vectors 

In formal description of conversions of states of atomic vectors we assume that the 
elementary conversions of states are running over either simultaneously both atoms 
or a single atom. For all these cases the conversions is accompanied by a transforma­
tion of valence states of either both atoms or a single atom; formally, it can be des­
cribed by the algebraic approach suggested for conversions of valence atomic states1 

(containing 22 elementary conversions). Since, as was mentioned above, a conversion 
of a state of a given atomic vector can be distinguished by three different ways 
(valence states are changed for both atoms, first atom, and second atom, respectively), 
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Mathematical Model of Organic Chemistry 2645 

the total amount of different elementary conversions of states of atomic vectors 
is composed of 3.22 = 66 different types, see Table I. A transition from the initial 
to final state is described, formally, by Eq. (1), where the used vectors are 9-dimen­
sional. 

I 
Example 5: Conversion "C=O -+ -C-O- is described by 

/' - 1-

(0, 2, 1 ,0, 2, 4, 0, 1, 0) + (0, 2, - 1, 0, - 1, 0, 2, - 1, 0) = (0, 4, 0, 0, 1, 4, 2, 0, 0) , 

where the used R vector VR does not belong to the set of elementary conversions, 
see Table I. This fact means that the studied conversion should be characterized as 
"multi-step" . 

Distance Between Two States of Atomic Vectors 

Let us assume that all states of atomic vectors form the so-called vertices of a graph 
G. Two vertices are connected by an edge if both states (assigned to the considered 
vertices) are mutually related by an elementary conversion. The edges of G are 
evaluated by alphanumerical symbols of elementary conversions (see Table I). The 
distance between two states of an atomic vector is defined as the graph-theory distance 
between the corresponding pair of vertices l , i.e. by the smallest number of edges 
that form a path connecting the vertices. This corresponds to the smallest number 
of elementary conversions that transforms the initial (educt) state to the final (product) 
state. 

" I _ 
Example 6: The distance between states C=O and -C-O- is 3, one of the 

./ - -
possible paths in the graph G should be of the form I 

I 
-+ -C-O-. 

I 

Now, the task standing before us is to formulate an algorithm for the calculation 
of distance between two states of an atomic vector. For this purpose we have derived 
a function dl which expresses the distance between two states with the same multi­
plicity of bond connecting both atoms of the atomic vector (e.g. for =X-y and 
-X-Y-). The function dl is used in the forthcoming algorithm LENGHT which 
calculates the distance d between two states of an atomic vector with arbitrary 
multiplicity of bonds connecting both atoms in the two states. 
The function d l is specified in Appendix. 

Algorithm LENGHT 

Step 1 (initialization): Let a = (al' a2' ... , a9) and b = (bl , b2, ... , b9) be two vectors of the 
evaluated states of an atomic vector, they are choosen in such a way that as 6 bs (where 
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TABLE I 

Elementary conversions of states of atomic vectors (symbols from the left column are specified 
in ref. 1 and by Fig. 1). 

Notation Reac.tion scheme (example) Vector ZR 

Heterolytic reacti.ons 

IDE X-~Y -+ X + y (2,-1,0,0,-1,0,-1,0,0) 

2DE X-(y ~ X-y (2,1,-1,0,-1,0,1,-1,0) 

3DE X_fy ~ X==y (2,0,1,-1,-1,0,0,1,-1) 

lD1 
E -X-Y -+ X-Y (2,-1,0,0,0,0,0,0,0) 

2Dl 
E =X-Y ~ -X-y (2,1,-1,0,0,0,0,0,0) 

3D1 
E =X-Y~ =X-y (2,0,1,-1,0,0,0,0,0) 

lD2 
E X -y--+ X-y (0,0,0,0,0,2,-1,0,0) 

2D2 
E 

X-y=~ X-y- (0,0,0,0,0,2,1,-1,0) 

3D2 E X-Y=_ X-y= (0,0,0,0,0,2,0,1,-1) 

lDN X~-y ~ X +y (0,-1,0,0,-1,2,-1,0,0) 

2DN XS-y --+ X-y (0,1,-1,0,-1,2,1,-1,0) 

3Dl'f Xby --+ X=y (0,0,1,-1,-l,2,0,~-1) 

lD1 
If -tx-Y ---+ X-Y (0,-1,0,0,0,0,0,0,0) 

2Dl 
N :!X-Y---+ -X-y (0,1,-1,0,0,0,0,0,0) 

3Dl 
N 

-SX-y---+ =X-y (0,0,1,-1,0,0,0,0,0) 

lD2 
N X-Y~- ~ X-y (0,0,0,0,0,0,-1,0,0) 

2D2 
If 

X-yL-+ X-Y- (0,0,0,0,0,0,1,-1,0) 

3D2 
B 

x-rl;; -+ X-Y= (0,0,0,0,0,0,0,1,-1) 

Cell action Czechoslovak Chern. Commun~[VOI. 51J [19861 
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TABLE I 

(Continued) 

~ 

liE X+ Y -+ X-Y (-2 ,~,O,O,~,O,~.o,O) 
~ 

(-2,-~,1,0,~,0,-1,1,0) ~ X-y -... X=y 
~ 

(-2,O,-~,~, l,O,O,-l,~) 3~ X=y-+ XEY 

1Al 
r_ 

(-2,1,0,0,0,0,0,0,0) E X-Y ~ -X-Y 

2A1 j("-
(-2,-1,1,0,0,0,0,0,0) E -X-Y ~ =X-y 

3~ 
C'-

(-2,0,-l,l,0,0,0,0,0) =X-y~ :X-y 

~ 
..",,+ 

X-y ~ X-y- (0,0,0,0,0,-2,1,0,0) 

2~ 
-A-

X-y-~ X-Y= (0,0,0,0,0,-2,-1,1,0) 

3~ 
~ 

X-y= ~ X-y= (0,0,0,0,0,-2,0,-1,1) 

.#'-
(0,1,0,0,1,-2,1,0,0) IAN X +y ~ X-Y 

r_ 
(0,-1,1~0,1,-2,-1,~,0) 2AN X-y -+ X=y 

""-3AN X=Y ~ X::Y (0,0,-1,1,1,-2,0,-1,1) 

1Al 
N X-Y --400- -X-y (0,1,0,0,0,0,0,0,0) 

2~ -X-Y ~ =X-y (0,-1,1,0,0,0,0,0,0) 

3~ =X-y~ -=x-y (0,0,-1,1,0,0,0,0,0) 

1~ X-Y ---'r X-y- (0,0,0,0,0,0,1,0,0) 

2~ X-y-~ X-Y= (0,0,0,0,0,0,-1,1,0) 

3~ X-Y=·~ X-y= (0,0,0,0,0,0,0,-1,1) 

Homalytic reactions 

X+y ~ 
• • 

ll1l X Y (~-1,0,0.-1,1,-~,0,0) 

X±y~ • • (1,1,-1,0,-1,1,1,-1,0) 2~ X-y 

Xoky -4 
• • (~,O, 1,-1,.-~, l,.o,i, -~) 3DR X=y 
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TABLE I 

(Continued) 

ui • (1,-1,0,0,0,0,0,0,0) +X-y ~ X-y 

~ -1..X-y ~ • 
(l,l,-l,O,O,O,O,O,O) -X-y 

3Di -Lx._y --+ • (1,0,1,-1,0,0,0,0,0) =x-y 

.~ • (0,0,0,0.0,~,-1,0,0) X-Y+~ X-Y 

2I{ X-y.1... ~ • (0,0,0,0,0,1,1,-1,0) X-y-

3D2. X_Y.L --io • (0,0,0,0,0,1,0,1,-1) R X-Y= 

.r.tt ~. 
(-1,1,0,0,1,-1,1,0,0) 1~ X + Y -'> X-Y 

.~I'l 

2~ X-Y ~ X=Y (-1,-1,1,0,1,-1,-1,1,0) ... ~ 
3~ X=Y --+ X5Y (-1,0,-1,1,1,-1,0,-1,1) 

U 1 
{:'. 

(-1,1, ° ,0,0,0 J 0,0,0 ) R X-Y ~-X-Y 

2~ 
.r. 

(-1,-1,1,0,0,O,O,0,0) -X-Y ~=X-Y 

3~ "'. =X-Y --+ =X-"l <-1,0,-1,1,0,0,0,0,0) 

1~ 
.~ 

(0,0,0,0,0,-1,1,0,0) X-Y ~ X-y-

2~ 
.~ 

(0,0,0,0,0,-1,-1,1,0) X-Y- --:,. X-I= 

3~ 
.~ 

(0,0,0,0,0,-1,0,-1,1) X-Y= --+ X-IE 

Redox re.actions . 

• • 
lDo X +Y ---+ X + Y (-1,0,0,0,0,1,0,0,0) 

2Do X + y ~ X +y (-2,0,0,0,0,2,0,0,0> 

lD1 • (-1,0,0,0,0,0,0,0,0> x. + y ~ X + Y 
0 

2D1 X +y 
0 ---+ X + Y C-2,0,0,0,0,0,O,O,0) 

lD2 • (0,0,0,0,0,-1,0,0,O) X +y ~ X + Y 
0 

2D2 
0 

X +y -+ X+ Y (0,0,0,0,0,-2,0,0,0) 

Collection Czechoslovak Chern. Commun. [Vql. 51J [1988J 
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TABLE I 

(Continued) 

~ 
2Az. 

U; 
2A1 

r 

~ 
2~ 

• x+ y --+ 

X+Y--+ 
X+Y ---+ 

X +y ---to 

X + y ~ 

X + y ---+ 

. 
X + Y 

X + y 

• 
X + y 

X +y 

• 
X +Y 

:x +Y 

2649 

C~.OtO,O,o~-~,o,o~o) 

(2,0,0,0,O,-2,0,0~0) 

(1,0,0,0,0,0,0,0,0) 

(2,0,0,0,0,0,0,0,0) 

(0,0,0,0,0,~0,0~0) 

(0,0,0,0~0,2,0,0,0) 

the components as, bs are the multiplicities of bonds between atoms in the first and second 
state, resp.). 

Step 2: If as = bs then d(o, b): = d1 (0, b) and go to step 5. 

Step 3: N: = 0s-bs' Realize a break of N bonds between atoms from the first state ° by all 
possible permissible ways, the result of these breaks forms a set M. For example, for N = I 
and if the first state is X=Y, the set M= {X-V, X-V, X-Y}; for N= 2 and the same 
state we get M = {gy, lxV, xV, XVI, XX}, and for N = 3 and X=Y we get M = m~Y, 
~'Y, ~Y, X'Y', XX, XX', XYI}. The set M is composed of those states that have the same 
multiplicity of the bond as the second state. 

Step 4: d(o, b): = min {d1(k, b); kE M} + N. 

Step 5: End of the algorithm LENGTH. 

Example 7: For states -C=N and =C=N- we obtain (by using the algorithm 
LENGTH) the distance d = 3. One of the possible paths corresponding to this 
distance is 

Paths in Graph of States of an Atomic Vector 

The aim of this section is to look for shortest paths in the graph G assigned to a given 
atomic vector, we know that its vertices and edges represent the states of atomic 
vector and their mutual interconversions, respectively. The know algorithms in graph 
theory4.5 are not very useful for our purposes, they usually need to keep explicitly, 
at least, some subgraph (e.g. containing for (C, C) atomic vector approximately 
2000 vertices) of the graph G. We suggest the algorithm PATH which involves as an 
input the initial (E-educt) and final (P-product) vertices (states of the atomic vector) 

Collection Czechoslovak Chern. Commun. [Vol. 51) (1986) 
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and the distance N calculated for these two vertices by the algorithm LENGTH. 
The algorithm PATH generates only a subgraph of G which is composed of shortest 
paths from E to P vertices, whereas their distance is determined by the positive 
integer N. Its complexity does not depend on the total number of vertices of a parent 
subgraph of G (assigned to the given atomic vector), its time consuming is mainly 
determined by the distance N, which for realistic applications is ranged from 2 to 6. 

Algorithm PATH 

Step I (initialization): The vertices E and P are algebraically determined by 9-dimensional vectors 
e and P. resp .• their distance is equal to N. i.e. N: = d(e. P). The set f!4 is composed of all 
possible 66 elementary conversions listed in Table J. 

Step 2: i: = 0 and the vertex E is included at the zeroth level. 

Step 3: j: = I. 

Step 4: Takej-th vertex from the i-th level, if it does not exist then go step 6. Apply to this vertex 
all the elementary conversions from the set f!4 and retain only those ones that are chemically 
permissible and their distance d (calculated by the algorithm LENGTH) from the vertex P 
isequal to N - j + I. Include these vertices at the (i + 1)-th level and connect tt.em in a new 
generated graph by edges with the j-th vertex from the i-th level. 

Step 5: j: = j + I and go to step 4. 

Step 6: i: = j + 1, if i < N - 1 then go to step 3 else connect by edges all vertices from the 
(N - 1 )-th level with the vertex P and go to step 7. 

Step 7: You have generated a graph whose vertices and edges form shortest paths between vertices 
E and P with the length determined by N, this graph forms a subgraph of G assigned to the 
studied atomic vector. 

The algorithms LENGTH and PATH were implemented in FORTRAN for the 
computer EC 1033, they form main part of the program PEACE (Program for 
Elementary conversions of Atomic Couples Elaboration). This program is able to 
generate also paths with length longer by a prescribed constant. 

ILLUSTRATIVE CHEMICAL EXAMPLE 

For better understanding of the present theory we give an illustrative example in 
a detailed form; in particular, we shall consider the conversion of the atomic vector 
(C, N) from the state -C=NI to the state :::C=N(+):::. The educt and product 
states are described by 9-dimensional vectors (0, 1,0,1,3,2,0,0,1) and (0,2,1,0, 
2,0,2, 1,0), respectively. The distance between these input states is N = 4; hence, 
there exist four elementary conversions, sequences of which converse the educt state 
on to the product state. All the paths produced by the algorithm PATH will be clas­
sified by the alphanumerical symbol of first elementary conversion. 

The first conversion step 1A~ produces six paths, where one can recognize among 
them typical remarks of mechanisms of the Pinner reaction, Stephen reduction of 
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nitriles or its side realization (With product R'C=N(+VH ), addition of 
RO/ 'CH2 R 

thioamides or sulfoamides to nitriles, cycloaddition of substituted alkylchlorides to 
thiocyanates catalyzed by SnCI4 , etc. Some paths do not correspond to known 
reactions since they are either involving rather "exotic" intermediates (e.g. -e(+)= 
= N( + ):::) or still not yet realized. 

lA~ , -
3DN (+1 - G /C=N-

-C=N- (+1 (+V 
-C=N, 

-C=N- ~ 
(-L (~V 

~ (+) -C= , , (+V 

-C=N -C=N- ,H (+1 ~ " - /C=N, 
/C=N- /C=N-

lA~ " .+ 

-c=il- G /C=N-
• +/ 

-C=N, 

If the first step is lA~ (an association of the HOMO of a nucleophile with the 
LUMO of a carbon), then the program produces two alternative paths. 

3D ~ .J-J lA2 
N 'C=N E 

G ~=~_:> 
These are typical, for example, for mechanisms of a formation of cyclic imino­
carbonates, reactions of nitriles with conjugated bases with C-acides, additions of 
Grinard reagents to nitriIes, alcalic hydrolyses of nitriles, additions of the dimethyl­
sulfoxide to nitriles catalyzed by C-e1ectrophiles (tritylperchlorate), etc. 

Third alternative possibility determined by the first step l.4i represents an associa­
tion of radical with nitrogen. In these paths one can see an intermediate --C=N~ 
resulting to nitrile-isonitrile isomerisation, steps of radical addition, etc. 

. lA' 
(-L •• ~ 
-C=N-~ 

lA~ 

-C=N-~ 

-C=N( ..2!!L 

Next three possibilities are characterized in the first step by a dissociation (hetero­
lytic or homolytic) of triple bond C==N. If this dissociation is nucleofugal (from the 
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standpoint of the carbon) 3DN• then we get three paths. 

lA~ 
lA~ " - lA~ 

(.) 

GL ..... C=N-

G 
-C=N- (.) (+)....- 3 -C=N ~_~=~H 

-C=N, N ,_(.), 

..... C-N, 
.J-) ~ " - 1A~ 

'C=N /C=N-..... -

They correspond to intermediate steps of formation of imidoylhalides, O-alkylimido 
salts, additions of the benzylamine to nitriles catalyzed by LiAIH4 • etc. 

Models of reactions initiated formally by the heterolytic dissociation 3DE of the 
bond C=N, 

3D H (+) 
-C=N __ E -C=N E

'A~ ~C =N(') 

lA~ (-L _ 
. -C=N-

1 A~ (-L .(.) 
-C=N-

lA~ 

G 
1At 

GL 
lAt 

GL 

can be applied to additions initiated either by strong electrophiles (with respect to 
carbon) or strong nucleophiles (with respect to nitrogen). Mixed ion-radical sequences 
appear rather unusual. 

Paths with the first elementary step 3DR may be assigned to models of mechanisms 
of catalytic hydrogenation of nitriles, the reaction of F 3C-CN with AgF 2 

( F C F) ~ 3 F::C=N(+):::x • etc. 

- 30R • 
-C=N -- -C=!'-[ 

Some paths with mixed ion-radical elementary reactions are not still corresponding 
to known reactions. 
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If the list of states of considered atomic vector is complete (e.g. for atomic vector 
(C, N) this list contains 156 items, where 50 items are stable), then we may expect 
that the program produces all possibilities for conversions of an educt state to a pro­
duct state. Hence, taking these states of a given atomic vector as "subsynthons", 
we get very powerful algorithmic method for the modelling of syntheses and retro­
syntheses, respectively. 

In our recent communication6 we have suggested two alternative methods for the 
description of reaction mechanisms. The first one is based on the notion of reaction 
mechanism graph, it can be simply related to the graph G produced by the present 
theory. The second one, more appropriate for computer implementation, uses the 
so-called ANCOD (AlphaNumerical CODes) strings. Both these approaches re­
present very valuable and fruitful methods for formal modelling of reaction mecha­
nisms, their interconnections with the present theory will be studied in forthcoming 
communication of this series. 

The authors wish to express their appreciation of stimulating discussions to Dr M. Kunz, Research 
Institute of Macromolecular Chemistry, Brno and to Prof. M. Sekanina, Department of Algebra 
alld Geometry, Purkyne University, Brno. 

APPENDIX 

Let a = (aI' az, ... , a 9) and b = (b l , bb ... , b9) be two vectors describing states of 
a given atomic vector, and let us assume that they are restricted by as = bs, i.e. in 
both states the multiplicity of bond between atoms is the same. A function F z maps 
a valence state onto another valence state in which the common bond is not counted, 

F ( ) _ F ( ) _ {X' = (Xi' X 2 , ... , X9) for Xs = 0 
2 X - ZXI>X 2 ,···'X9 -

X = (x;, ... , X i + 1 - 1, ... , X i + S - 1, ... , X9) 

for Xs = 

New state vectors corresponding to a and b are denoted by a' and b', 

a' = F2(a) = (a~, a;, ... , a~), 

Let v be a vector defined by 

The entities I 1, ... , 16 are defined as follows 
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6 

Let us define the constants B, AI, A2, C 1 , C2 , D 1, D2, E 1 , and E2 by B = L: lId, 

DI = F 1( IlV t> 11, 12 ,/3), D2 = FI(IlV6,/4,ls,/6) , 

Al = F(DI) -7- 2,A2 = F(D2) -7- 2, 

C1 = mod2 (Ilvd G(DI)' C2 = mod 2 (IlV6) G(DJ 

EI = H(llv 1 Ilv6, min {min {At> Illvll -7- 2}, min {A 2 , IIlv6 1 -7- 2}}) 

E2 = H(IlVI Ilv6, min {min {C I , mod2 (IlVl)}' min {C2, mod2 (IlV6)}})' 

i = 1 

where -7- denotes the integer divide, and mod 2 ( ) is the modulo-two function, and 
functions F, G, F I , and H are defined as follows: 

F(x) = {~ for x> 0, 

for x ~ 0, 

G(x) = {~ for x> 0, 

for x ~ 0, 

H(x, y) = {fy, for x. Y ~ 0, 

for x. Y < 0, 

4 

F1(xt>X2 ,X3 ,X4 ) = Ixt\ - 2L:H(X I ,xi ). 
i=2 

Finally, the distance d1 between states 0 and b is determined by 

Exam pie: We shall calculate the distance between states =C= N- and "'- C=N( + v' . / "'-
we get 

o = (0,0,2,0,2,2, 1, 1, 0) b = (0,2, 1,0,2,0,2,1,0) 

0' = (0,0,1,0,2,2, 1,0,0) b' = (0,2,0,0,2,0,2,0,0) 

v = (0,2, -1,0,0, -2,1,0,0) 

II = -1 12 = ° 13 = ° 14 = -1 15 = ° 16 = ° 
B = 3 Dl = ° D2 = 1 Al = ° A2 = ° C I = ° 

C2 = ° El = ° E2 = ° 
d1(0, b) = 3 + ° + ° + ° + ° -° -° = 3 
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A path in the graph G between the vertices assigned to states a and b may look as 
follows 

We emphasize that the above theory is applicable also for the calculation of distances 
between valence states of single atoms l . For example, the distance between valence 
states =X and 'X- is equal to the distance between states =XY and 'XV of a for-

/ / 

mal atomic vector (X, V). I 
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